202 research outputs found

    ‘I don’t really like the thing what you do, I like it more because you get the stickers’: the impact of rules and rewards on children’s transition experiences

    Get PDF
    Children’s early experiences of educational transition can be a critical step in their life-long learning journey, yet we know very little about their perceptions of this experience. This paper draws on the findings of a participatory study, which identified rules and rewards as being significant factors for children transitioning from an early childhood education setting to the first year of primary school in a European school in a major city in Belgium. This case study accessed the voices of six children, their parents and the teaching staff. The findings indicated that the children perceived both sanctions and rewards to be important in the enforcement of classroom rules. However, the children expressed concerns about their ability to adapt their behaviour to meet the cultural expectations of the setting and were troubled about the impact this could have on their social belonging. Furthermore, learning dispositions were found to be inhibited by both ambiguous criteria for success and the desire to earn rewards. This paper recommends that educators give careful consideration to the ways in which rules and rewards impact upon children’s experiences of transition

    Dynamic clamp with StdpC software

    Get PDF
    Dynamic clamp is a powerful method that allows the introduction of artificial electrical components into target cells to simulate ionic conductances and synaptic inputs. This method is based on a fast cycle of measuring the membrane potential of a cell, calculating the current of a desired simulated component using an appropriate model and injecting this current into the cell. Here we present a dynamic clamp protocol using free, fully integrated, open-source software (StdpC, for spike timing-dependent plasticity clamp). Use of this protocol does not require specialist hardware, costly commercial software, experience in real-time operating systems or a strong programming background. The software enables the configuration and operation of a wide range of complex and fully automated dynamic clamp experiments through an intuitive and powerful interface with a minimal initial lead time of a few hours. After initial configuration, experimental results can be generated within minutes of establishing cell recording

    Acetylcholine Reduces L-Type Calcium Current without Major Changes in Repolarization of Canine and Human Purkinje and Ventricular Tissue

    Get PDF
    Vagal nerve stimulation (VNS) holds a strong basis as a potentially effective treatment modality for chronic heart failure, which explains why a multicenter VNS study in heart failure with reduced ejection fraction is ongoing. However, more detailed information is required on the effect of acetylcholine (ACh) on repolarization in Purkinje and ventricular cardiac preparations to identify the advantages, risks, and underlying cellular mechanisms of VNS. Here, we studied the effect of ACh on the action potential (AP) of canine Purkinje fibers (PFs) and several human ventricular preparations. In addition, we characterized the effects of ACh on the L-type Ca2+ current (I-CaL) and AP of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and performed computer simulations to explain the observed effects. Using microelectrode recordings, we found a small but significant AP prolongation in canine PFs. In the human myocardium, ACh slightly prolonged the AP in the midmyocardium but resulted in minor AP shortening in subepicardial tissue. Perforated patch-clamp experiments on hiPSC-CMs demonstrated that 5 mu M ACh caused an approximate to 15% decrease in I-CaL density without changes in gating properties. Using dynamic clamp, we found that under blocked K+ currents, 5 mu M ACh resulted in an approximate to 23% decrease in AP duration at 90% of repolarization in hiPSC-CMs. Computer simulations using the O'Hara-Rudy human ventricular cell model revealed that the overall effect of ACh on AP duration is a tight interplay between the ACh-induced reduction in I-CaL and ACh-induced changes in K+ currents. In conclusion, ACh results in minor changes in AP repolarization and duration of canine PFs and human ventricular myocardium due to the concomitant inhibition of inward I-CaL and outward K+ currents, which limits changes in net repolarizing current and thus prevents major changes in AP repolarization

    Acetylcholine Reduces IKr and Prolongs Action Potentials in Human Ventricular Cardiomyocytes

    Get PDF
    Vagal nerve stimulation (VNS) has a meaningful basis as a potentially effective treatment for heart failure with reduced ejection fraction. There is an ongoing VNS randomized study, and four studies are completed. However, relatively little is known about the effect of acetylcholine (ACh) on repolarization in human ventricular cardiomyocytes, as well as the effect of ACh on the rapid component of the delayed rectifier K(+) current (I(Kr)). Here, we investigated the effect of ACh on the action potential parameters in human ventricular preparations and on I(Kr) in human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). Using standard microelectrode technique, we demonstrated that ACh (5 ”M) significantly increased the action potential duration in human left ventricular myocardial slices. ACh (5 ”M) also prolonged repolarization in a human Purkinje fiber and a papillary muscle. Optical mapping revealed that ACh increased the action potential duration in human left ventricular myocardial slices and that the effect was dose-dependent. Perforated patch clamp experiments demonstrated action potential prolongation and a significant decrease in I(Kr) by ACh (5 ”M) in hiPSC-CMs. Computer simulations of the electrical activity of a human ventricular cardiomyocyte showed an increase in action potential duration upon implementation of the experimentally observed ACh-induced changes in the fully activated conductance and steady-state activation of I(Kr). Our findings support the hypothesis that ACh can influence the repolarization in human ventricular cardiomyocytes by at least changes in I(Kr)

    Toward biological pacing by cellular delivery of Hcn2/SkM1

    Get PDF
    Electronic pacemakers still face major shortcomings that are largely intrinsic to their hardware-based design. Radical improvements can potentially be generated by gene or cell therapy-based biological pacemakers. Our previous work identified adenoviral gene transfer of Hcn2 and SkM1, encoding a "funny current" and skeletal fast sodium current, respectively, as a potent combination to induce short-term biological pacing in dogs with atrioventricular block. To achieve long-term biological pacemaker activity, alternative delivery platforms need to be explored and optimized. The aim of the present study was therefore to investigate the functional delivery of Hcn2/SkM1 via human cardiomyocyte progenitor cells (CPCs). Nucleofection of Hcn2 and SkM1 in CPCs was optimized and gene transfer was determined for Hcn2 and SkM1 in vitro. The modified CPCs were analyzed using patch-clamp for validation and characterization of functional transgene expression. In addition, biophysical properties of Hcn2 and SkM1 were further investigated in lentivirally transduced CPCs by patch-clamp analysis. To compare both modification methods in vivo, CPCs were nucleofected or lentivirally transduced with GFP and injected in the left ventricle of male NOD-SCID mice. After 1 week, hearts were collected and analyzed for GFP expression and cell engraftment. Subsequent functional studies were carried out by computational modeling. Both nucleofection and lentiviral transduction of CPCs resulted in functional gene transfer of Hcn2 and SkM1 channels. However, lentiviral transduction was more efficient than nucleofection-mediated gene transfer and the virally transduced cells survived better in vivo. These data support future use of lentiviral transduction over nucleofection, concerning CPC-based cardiac gene delivery. Detailed patch-clamp studies revealed Hcn2 and Skm1 current kinetics within the range of previously reported values of other cell systems. Finally, computational modeling indicated that CPC-mediated delivery of Hcn2/SkM1 can generate stable pacemaker function in human ventricular myocytes. These modeling studies further illustrated that SkM1 plays an essential role in the final stage of diastolic depolarization, thereby enhancing biological pacemaker functioning delivered by Hcn2. Altogether these studies support further development of CPC-mediated delivery of Hcn2/SkM1 and functional testing in bradycardia models.Therapeutic cell differentiatio

    Immunohistochemical, morphological and ultrastructural resemblance between dendritic cells and folliculo-stellate cells in normal human and rat anterior pituitaries

    Get PDF
    Immunolabeling of cryo-sections of human anterior pituitaries obtained at autopsy, and of cryo-sections of freshly prepared rat anterior pituitaries, with a panel of monoclonal antibodies against markers of the monocyte/dendritic cell/macrophage lineage, reveals in both species a characteristic pattern of immunopositive cells, among which many cells with dendritic phenotype are found. Cells characterized by marker expression of MHC-class II determinants and a dendritic morphology are present in both human and rat anterior pituitary. Markers characteristic of dendritic cells such as the L25 antigen and the OX62 antigen were present in anterior pituitaries from human and rat respectively. The population of MHC-class II expressing dendritic cells of the rat anterior pituitary is compared at the ultrastructural level with the folliculo-stellate cell population, which cell type has been previously characterized by its distinctive ultrastructure and immunopositivity for the S100 protein. Using immune-electron microscopy of rat anterior pituitaries fixed with periodate-lysine-paraformaldehyde, we were able to distinguish non-granulated cells expressing MHC-class II determinants, whereas no MHC-class II expression was found in the granulated endocrine cells. Using double immunolabeling of cryo-sections of these rat AP with 25 nm and 15 nm gold labels, we demonstrated an overlap between the populations of MHC-class II-expressing and S100 protein-expressing cells. Furthermore, MHC-class II-expressing and S100-positive cells showed ultrastructural characteristics that have been previously ascribed to folliculo-stellate cells. At the light microscopical level in the rat AP, a proportion of 10 to 20% of the S100-positive cells was found immunopositive for the MHC-class II marker OX6. In the hu
    • 

    corecore